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• Breakthrough Propulsion Physics
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Revolutionary Propulsion Research Project:
Organization and Management Structure
Revolutionary Propulsion Research Project:
Organization and Management Structure

♦ Project Office
– Under Advanced Space Transportation Program Office at MSFC

– Manager, John Cole

– Deputy Manager, Ron Litchford
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Revolutionary Propulsion Research ProjectRevolutionary Propulsion Research Project

♦ Goals & Objectives
– Look beyond current space transportation architectures and produce the science that

might lead to low fuel fraction, low cost, revolutionary space access vehicles

– Contribute to fundamental advancement of in-space propulsion technologies that can
ultimately enable short-duration, on-demand travel to any location in the solar system,
as well as penetration of the interstellar medium

– Demonstrate scientific proof-of-principle of extremely energetic and enabling
propulsion technologies

– Work closely with STLT/3rd Gen and In-Space programs as well as NEXT (NASA
Exploration Team) to transfer and promote emerging propulsion technologies when
appropriate

– Promote a culture of “excellence in research” – Demand Good Science

♦ Focus Area is Highly Energetic Propulsion
– High Specific Energy/Power

• highly energetic reactions / off-board resources / ultra energy storage & power conversion

– High Temperatures & Electromagnetics
• plasma sciences / high temperature technologies / plasma accelerators / MHD

– Non-Chemical Energy Sources
• fission, fusion, antimatter, nuclear isomers

– Continued Support of Advanced Chemical Research
• high energy density fuels / advanced cycles
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♦ Earth Orbit Access Technical Challenges
– The fundamental technical obstacles to routine space

access are related to two basic parameters of Energetics
• Specific Energy (reducing fuel fraction requires higher Isp)
• Specific Power (T/W > 1 requires multi-GW power)

– Routine space access operations will ultimately require
propulsion systems possessing robust performance
margins

• Adding features such as wings, landing gear, contingency
fuel, operability, safety requirements, and more payload
demands higher specific impulse (desired fuel fraction < 70%)

• Order of magnitude increase in Isp with 1< T/W < 3
• Implies order of magnitude increase in vehicle specific energy

without sacrificing specific power

Why is Propulsion Energetics Research Needed?Why is Propulsion Energetics Research Needed?

– Currently, No Technologies Exist that can significantly reduce fuel fraction while providing
the specific energy/power needed to place a given mass in orbit

– Research Avenues Do Exist, however, that may enable the desired specific energy
• High energy density propellants
• Beamed energy from ground based power sources
• Closed cycle nuclear systems (safe, very high specific power)
• Ultra-high-density energy storage

– Research Avenues also exist for developing engines with the required specific power
• Electromagnetic thrust augmentation, for example
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♦ In-Space Transportation Challenges
– The fundamental technical obstacles to deep space

(beyond mars) transportation are also related to
propulsion energetics

• Specific Energy
– low IMLEO demands high Isp propulsion

• Specific Power
– short trip times demand high ∆v maneuvers

(i.e., high jet power for high acceleration)

– Affordable, short-duration, on-demand travel
beyond mars will require robust performance
margins

• Order of magnitude increase in specific energy
– delivered mass fraction > 50%

• Specific Power ∼ 10 kW/kg
– outer-planet round trips measured in days rather than years

… must break through 1 kW/kg barrier
and ultimately approach ∼∼∼∼ 10 kW/kg

Round Trip Interplanetary Mission Trip Time
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Why is Propulsion Energetics Research Needed?Why is Propulsion Energetics Research Needed?

– Requirements far beyond our current plans for Nuclear Electric Propulsion (~0.03 KW/kg)

– Potential research avenues
• Advanced closed-cycle nuclear electric propulsion best near-term prospect
• Fusion and antimatter good long-term prospects
• Beamed energy and sails may help
• Component research also needed (high-temperature radiators / flight-weight magnets)
• Breakthrough propulsion physics (new scientific discoveries)
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Rationale for Propulsion Energetics ResearchRationale for Propulsion Energetics Research

♦ Push technology to enable commercial ventures and space voyages
that are not currently feasible

– Propulsion is the key limiting factor in most "over the horizon” missions, such as:
• Safe, low-cost, routine earth-to-orbit transportation

• Rapid, safe, and affordable transportation of large payloads throughout the solar system
• Penetration of the interstellar medium and timely return of scientific information

♦ Propulsion energetics appears to be best plausible research strategy
– A strategic investment for advancing beyond today's planned space transportation

technologies

– NASA must make this investment, since there is no current commercial incentive
or military need for this capability

– Potential solutions are neither quick nor simple
– Need to start developing the scientific underpinnings now rather than later
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Research Investment CategoriesResearch Investment Categories

♦ Advanced Chemical

♦ Electromagnetics & Plasma-Based

♦ Advanced Nuclear (Fission, Fusion, & Antimatter)

♦ Advanced Sails and Interstellar Propulsion

♦ Systems Analysis

♦ Breakthrough Propulsion Physics
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Propulsion Research Approach for 2003Propulsion Research Approach for 2003

♦ Budget Split, preliminary

FY03 FY04
– Assume a budget of, after taxes $6895 K $6916 K

– Allocated for NRA’s
• Breakthrough Propulsion Physics 650 K 650 K

• Propulsion Research 2000 K 2000 K

– Allocated for In-House 4245 K 4266 K
• JPL 1100 K same

• GRC 1000 K

• MSFC 1245 K

• ARC 350 K

• Project Management 550 K
– 8 FTE for PO and managing NRA contracts 400 K

– Workshops 50 K

– Graphics Support 30 K

– Other 70 K
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ProgrammaticsProgrammatics

♦ Programmatic Approach
– Demonstrate scientific feasibility and, if possible, mature technologies to

TRL 3

– Encourage widest possible dissemination of scientific results

– Enhance and develop NASA in-house capabilities
• To perform world-class scientific research

• To effectively manage advanced propulsion research activities across the
agency

– Utilize unique external expertise and facilities (avoid duplication of existing
capability)

• DoD/DOE Laboratories (contracts & support of IPA’s)

• Universities (primarily grants)

• Private Sector (contracts & SBIR’s)

– Stimulate education and extend graduate research opportunities

– Release NRA’s directed at selected emphasis areas – as funding permits

♦ Programmatic Approach
– Demonstrate scientific feasibility and, if possible, mature technologies to

TRL 3

– Encourage widest possible dissemination of scientific results

– Enhance and develop NASA in-house capabilities
• To perform world-class scientific research

• To effectively manage advanced propulsion research activities across the
agency

– Utilize unique external expertise and facilities (avoid duplication of existing
capability)

• DoD/DOE Laboratories (contracts & support of IPA’s)

• Universities (primarily grants)

• Private Sector (contracts & SBIR’s)

– Stimulate education and extend graduate research opportunities

– Release NRA’s directed at selected emphasis areas – as funding permits



6111 – 11

Investment StrategyInvestment Strategy

♦ Investment Strategy
– 50% of funds distributed broadly in relatively small efforts
– 50% of funds invested in three “focus areas”
– NRA’s released when budget permits

• e.g., NRA 8-17 (launch assist / pulse detonation engines)

• Unable to release NRA during past few years (insufficient funds)

• Preferred approach for focus areas

– Selection criteria for in-house and external tasks.
• Research addresses revolutionary propulsion and satisfies the project objectives

• Research is reviewed and endorsed by appropriate management advisory team

• Involves a low cost meaningful experiment

• Provide some results each year and conclusive findings within 5 years
• Constrained by available resources

– A few unsolicited proposals have been selected (< 1 in 10)
– Some augmented SBIR’s and University grants

♦ Customers
– Space Transportation and Launch Technology (Code R)
– In-Space Transportation (Code S)

– NEXT - NASA Exploration Team (Code M)
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Management StrategyManagement Strategy

♦ Progress Evaluation / Assuring Technical Excellence
– Virtually all tasks are funded at level-of-effort ($ and manpower)
– Research progress depends on many intangible (non-quantitative) factors

• Capability & enthusiasm of investigators

• Leveraging of resources and expertise
• Adequate resources and time for maturation of ideas

– Task Planning & Review Cycle

• Identify critical (make or break) issues at an early stage and focus research efforts
• Stress proof-of-concept experiments (establish scientific feasibility)
• Set realizable schedule/milestones consistent with budget constraints

• Require annual publication of research results (deliverable)
• Annual review cycle by appropriate NASA Task Managers
• Graduate, continue, or terminate decision annually

– Terminate for non-performance or technologically unfeasible (negative findings)
– Anticipate 10 - 20 % annual washout (use freed funds to pick up new work)

• However, should avoid punishing researchers for good science that leads to
negative findings

• Continual dialogue with customers
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Investment Portfolio: Focus AreasInvestment Portfolio: Focus Areas

Emphasis on a few selected research areasEmphasis on a few selected research areas
leading to highleading to high --payoff propulsion technologiespayoff propulsion technologies
……♦ Magnetohydrodynamics (MHD)

– MHD Augmented Propulsion Experiment (MSFC/LyTec)

– MHD-Bypass Hypersonic Airbreathing Engine (ARC)
– MHD Slipstream Accelerator (RPI)
– High Power Nuclear MHD Space Propulsion (INSPI/University of Florida)

♦ Fusion
– Magnetic Nozzle Simulator for Fusion Plasma Conditions (GRC/OSU)

– Coaxial Helicity Injection Experiment (GRC/Princeton University)
– Magnetized Target Fusion (MSFC/LANL)

– Magnetic Nozzle Technology for Pulsed Micro-Fusion (MSFC)

♦ High Power (MW-Class) Electric Thrusters for Deep Space NEP
– 500 kW Lithium-Fed Lorentz Force Accelerator (JPL)

– 1 MW Bismuth Anode Layer Thruster (JPL)
– 1-MW Ion Engine Feasibility (JPL)
– FRC Thruster (MSFC/ University of Washington)
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Summary of Investment PortfolioSummary of Investment Portfolio

♦ Advanced Chemical
– Realities of Chemical Propulsion

• Will never provide ultimate desired capabilities

• All we have for now and for some time to come

• Some performance improvements possible

– High Energy Density Fuels
• Advanced hydrocarbons (AFRL/MSFC)

– ∆Isp = 20 sec / specific gravity = 1.1
– AFRL-Edwards provided MSFC with several advanced hydrocarbon fuels
– Initial screening of these fuels completed in 2001

• Recombination energy fuels (GRC)
– High risk monopropellant (Isp =550 - 700 sec)

– Experiments on formation of solid hydrogen snow completed in 2001

– Video-based analysis of particle formation and design of next phase of
experiment during 2002

• Metallic Hydrogen (Harvard University)
– Analysis of metallic hydrogen existence at megabar pressures

• Td N4, Tetrahedral Nitrogen (ARC)
– Synthesis paths explored using numerical chemistry in 2001

– Negotiations with AFRL to attempt synthesis (difficulties with low funds)

– Many other promising fuels and cycles can no longer be pursued
at this time
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SRI Int.

♦ Electromagnetics / Plasma Based
– Electromagnetics is a path for bypassing thermal limits

• Aim is conversion of electromagnetic energy to momentum

• Mainly oriented toward plasma based concepts

– Megawatt-Class Electric Thrusters (JPL)
• Li-fueled LFA test facility constructed

• 500 KW LFA thruster in assembly (initial testing in 2002)

• Contract with TsNIIMASH to design a subscale 200 kWe-
class bismuth anode layer thruster

• 1 Megawatt ion engine design feasibility assessment
underway

• Several field emitter concepts built and tested in 2001 and
2002 (tests ongoing)
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• Several field emitter concepts built and tested in 2001 and
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Lithium-Fed Lorentz Force Accelerator

Summary of Investment PortfolioSummary of Investment Portfolio
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♦ Electromagnetics / Plasma Based (cont’d)
– MHD Accelerators (ARC/MSFC/LyTec/AFRL)

• Small-scale MHD accelerator built and in-test at
Ames Electric Arc Shock Tunnel

– to support MHD bypass hypersonic engine research

• 1 MW steady flow MHD accelerator experiment
using 1-MW arcjet driver at MSFC

– support electrically augmented rocket research

– analysis and design complete / fabrication and
assembly ongoing

• Planning continues for development of a 20-MW
accelerator experiment at ARC

• MHD slipstream accelerator experiment at RPI

• Development of comprehensive CFD code for high-
temperature plasma/MHD flows
(ARC/Stanford/MSFC)

♦ Electromagnetics / Plasma Based (cont’d)
– MHD Accelerators (ARC/MSFC/LyTec/AFRL)
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accelerator experiment at ARC

• MHD slipstream accelerator experiment at RPI
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temperature plasma/MHD flows
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Magnetohydrodynamic Augmented
Propulsion Experiment (MAPX)

ARC MHD Accelerator AssemblyARC MHD Accelerator Assembly

Summary of Investment PortfolioSummary of Investment Portfolio

MHD Slipstream Accelerator
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♦ Electromagnetics / Plasma Based (cont’d)
– Beamed Energy

• Microwave Lightcraft rectenna testing at Renssalear
Polytechnic Institute

• Laser Lightcraft CFD analyses at MSFC in support of AFRL-
Edwards research

– Flight Weight Magnets
• High-purity aluminum magnet completed and tested in 2001

by LSU

• Development of low-weight superconductor magnet flux pump
continues at LSU

– MagLev Launch Assist
• Army and PRT conducting flywheel and drone launch studies

into 2002
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♦ Nuclear - Advanced Fission
– Chemical systems already pushed to limit
– Nuclear offers a new growth path

• Potential for 106 factor of improvement in specific energy

• Best near-term prospect (relatively high TRL)
• Potential to achieve specific power > 1 kW/kg with high-

temperature reactor

• Would also like to start exploring possible utilization of isomers
as funding levels permit

– LOX Augmented NTR
• First series of LOX injection testing of simulated NTR

completed by GRC in 2001
• Planning and experiment design for next series of tests will

continue into 2002

– High Temperature Nuclear Fuels
• Effort focuses on cermet and carbide fuels potentially capable

of enabling high performance (>0.1 kW/kg) nuclear electric
propulsion system as well as nuclear thermal rockets with
mission averaged specific impulse >850 secs

• Significant progress made by INSPI/ University of Florida in fuel
characterization and fabrication methodologies (effort
continuing into 2002)
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• First series of LOX injection testing of simulated NTR

completed by GRC in 2001
• Planning and experiment design for next series of tests will

continue into 2002

– High Temperature Nuclear Fuels
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Aerojet Corp Test Rig
LANTR hot fire test

(25:1 area ratio)

Summary of Investment PortfolioSummary of Investment Portfolio
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♦ Nuclear - Advanced Fission (cont’d)
– Nuclear Electric MHD Systems (Psp > 1 KW/kg)

• University of Florida analysis and assessment of vapor core reactor with MHD
energy conversion for deep space NEP is continuing

• Neutron ionization enhancement experiment at
MSFC temporarily halted (lack of adequate resources)

– Fundamental data obtained using electron gun to
simulate neutron flux

– Planned research includes in-pile experimentation to confirm
predictions based on modeling and electron-gun results

– May be able to restart research through an NRA solicitation
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Summary of Investment PortfolioSummary of Investment Portfolio
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♦Nuclear - Fusion

– Very high energy density reactions
•Theoretical Isp ≈ 106 sec

(with low neutron yield reactions)
•Benefits from energy conversion process

inside the plasma
•May require innovative confinement schemes

– High payoff but high risk
•Controlled fusion breakeven power never

demonstrated
•Serious research requires major fiscal

investments (distraction?)
•Envisioned systems tend to be big (high

IMLEO)

– Potential benefits demand we start now
•Payoff would be immense (∼ 10 kW/kg)
•Frontline researchers confident of success
•DOE has made significant progress
•NASA can pursue only with substantial DOE

help

Spherical Torus Experiment

Summary of Investment PortfolioSummary of Investment Portfolio
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♦ Nuclear - Fusion (con’t)
– Magnetic Nozzle Simulator (GRC/OSU)

• Final report on plasma/propellant boundary layer

• Coil hardware fabricated, test cell configured for
test

• Initial attempt at low power test

– Helicity Injection (GRC/Princeton University)
• Defined experimental campaign with NSTX

research plan

• CHE theory development and plasma modeling

• Small reactor study (ORNL)

♦ Nuclear - Fusion (con’t)
– Magnetic Nozzle Simulator (GRC/OSU)

• Final report on plasma/propellant boundary layer

• Coil hardware fabricated, test cell configured for
test

• Initial attempt at low power test

– Helicity Injection (GRC/Princeton University)
• Defined experimental campaign with NSTX

research plan

• CHE theory development and plasma modeling

• Small reactor study (ORNL)

National Spherical Torus Experiment
DOE Princeton Plasma Physics Lab

Summary of Investment PortfolioSummary of Investment Portfolio
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♦ Nuclear - Fusion (cont’d)
– Magnetized Target Fusion (MSFC/LANL)

• Completed Mark-1 Marshall gun experiment
demonstrating low jitter (<10 ns) and launching of 0.2
mg plasma at 62km/s

• Initiated design of Mark-2 gun
• Development of 2-D MHD simulation code

• 75% design completion for FRC target generator

– Gas Dynamic Mirror (MSFC)
• Brought up system and demonstrated first plasma

– IEC Fusion Reactor (MSFC)
• Placed into operation with deuterium plasma and

demonstrated neutron production

• Applying advanced plasma diagnostics to reveal
underlying physical processes

– University Efforts
• Z-Pinch (U. Nevada at Reno)
• FRC (U. Washington)

• Computational Analysis (UAH, U. Tenn.)
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• Brought up system and demonstrated first plasma
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demonstrated neutron production

• Applying advanced plasma diagnostics to reveal
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• Z-Pinch (U. Nevada at Reno)
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Deuterium Plasma

Summary of Investment PortfolioSummary of Investment Portfolio
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♦Nuclear - Antimatter
– Ultra-high energy density reaction

• Potential for Isp > 2 × 106 sec
• May be useful as catalyst for micro-fusion detonations as

well
– Major issues at this stage are production & storage
– High potential for commercial spin-offs
– Research team includes MSFC, Industry,

Universities, and DOE Laboratories

♦Storage Research
– High Performance Antiproton Trap (HiPAT)

• One-trillion antiproton storage capacity

• 18-day half-life

– Transportability
• Fill trap at Fermi Lab

• Transport to MSFC for utilization experiments

• To date, only tested with normal matter

♦Antimatter Catalyzed Micro-Fusion
– ICAN & MICF target concepts

– Reduce stand-off driver mass

– Antimatter usage rate less demanding

antimatter rocket
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♦ Interstellar Option
– Specific energy requirements beyond 109 MJ/kg
– May ultimately depend upon some unforeseen

breakthrough
– Limited penetration of interstellar medium is possible

•Utilization of insitu or off-board resources
•Solar, dust, laser, and magnetic sails

♦ Other Propulsion Options
− Micropropulsion technology
− Tethers
− Very large solar electric
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6111 – 25

♦ Interstellar - Advanced Sails
– Reinforced metal film sails

• Tasks underway include concept feasibility
evaluation, bonding, film assembly, and
reflectivity measurements

– KC-135 self deploying sail experiment
• Hoop sail experiment completed in FY01

• Vacuum deployment tests and KC-135 tests
planned for FY02

– Electrostatic dust solar sail
• Completed preliminary assessment of cloud

coupling to spacecraft

• Vacuum deployment test planned soon

♦ Interstellar - Advanced Sails
– Reinforced metal film sails

• Tasks underway include concept feasibility
evaluation, bonding, film assembly, and
reflectivity measurements

– KC-135 self deploying sail experiment
• Hoop sail experiment completed in FY01

• Vacuum deployment tests and KC-135 tests
planned for FY02

– Electrostatic dust solar sail
• Completed preliminary assessment of cloud

coupling to spacecraft

• Vacuum deployment test planned soon

electrodeelectrode

Dust sailDust sail
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♦ Interstellar - Advanced Sails (cont’d)
– Laser ablated sails

• Test performed to measure coupling coefficients.
Initial results in FY01

• Final results to be presented in FY02

– Laser sail photon measurements
• Completed force measurements in agreement

with theory to within 5%

• Preliminary results to be presented in FY02
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♦ Advanced Concepts Mission and Systems
Analysis

– Piloted outer planet missions
• Completed analysis of Neptune piloted mission using

Multi-MW NEP

• Completing analysis of chemical, fission, and fusion
options for Neptune

– Analysis of Jupiter and Saturn missions during FY02

– Team X; Completed initial assessment of evolutionary
approach to NEP

♦ Workshop and Data Base
– 13th Advanced Propulsion Concepts Workshop hosted

by JPL in June 2002

– Advanced Concepts Database is being modified to
ensure compatibility with ITAR guidelines
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Objectives & Goals

Implementation Budget / FTE

Vision Prudence

Balancing Responsibilities

Research Tasks

Sustain
Preeminence

Invest
Wisely

Objective
♦ Produce advances on physics to revolutionize

spaceflight and enable interstellar voyages
– Look beyond Newtonian mechanics to provide new

scientific foundations for breakthrough technology.

– Ensure that such research is conducted in credible
and productive manner.

Objective
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spaceflight and enable interstellar voyages
– Look beyond Newtonian mechanics to provide new

scientific foundations for breakthrough technology.

– Ensure that such research is conducted in credible
and productive manner.

Technical Challenges (Goals)
♦ Mass: Discover new propulsion methods that eliminate

or dramatically reduce the need for propellant.

♦ Speed: Discover how to circumvent existing limits to
dramatically reduce transit times.

♦ Energy: Discover new methods to power these
propulsion devices.

Technical Challenges (Goals)
♦ Mass: Discover new propulsion methods that eliminate

or dramatically reduce the need for propellant.

♦ Speed: Discover how to circumvent existing limits to
dramatically reduce transit times.

♦ Energy: Discover new methods to power these
propulsion devices.

Project Approach

♦ “Success” defined as “acquiring

reliable knowledge” (rather than
“achieving a breakthrough).

♦ Focus on immediate make-or-break
issues, unknowns, or curious effects.

♦ Explore multiple, divergent research
t

opics simultaneously.

♦ Sustain progress as a series of short-term, incremental tasks.

♦ Measure progress using the scientific method.

♦ Consider visionary specifications, yet tempered with credible
methods and foundations (reviews judge reliability of results,
not feasibilit y of conce pt).
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♦ “Success” defined as “acquiring

reliable knowledge” (rather than
“achieving a breakthrough).

♦ Focus on immediate make-or-break
issues, unknowns, or curious effects.

♦ Explore multiple, divergent research
t

opics simultaneously.

♦ Sustain progress as a series of short-term, incremental tasks.

♦ Measure progress using the scientific method.

♦ Consider visionary specifications, yet tempered with credible
methods and foundations (reviews judge reliability of results,
not feasibility of concept) .
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♦ Other
– Congressional Earmark to W. Virginia

Institute for Software Research
• Asymmetric Capacitor

– experiments to date indicate that Trichel
Pulses are part of the operation

• Liquid Metal Flywheel
– A generator mode has been built and

demonstrated using a gallium-Indium
eutectic

• Fissioning Plasma Core Reactor Analysis
– Analysis in support of INSPI/UF research

– A significant number of core calculations
have been run using U235 and Pu239

– A kinetics code has been developed
specifically for the analysis of the FPCR and
preliminary results obtained
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Funding Plans for FY03Funding Plans for FY03

♦ Two NRAs, some basic support, and a few close out tasks
continuing into FY03
– 60% for NRA for Revolutionary Propulsion Research and

contract administration
– 10% for NRA for Breakthrough Propulsion Physics and

contract administration
– 30% for NASA Centers basic support and completing critical experiments

• GRC
– Recombination Energy Fuels, needs one more year to get data from experiment

• JPL
– Li LFA thruster test facility completed, engine assembly underway, and testing will

continue into 2003

– Systems analyses and evaluation support

– Database maintenance and Workshop Management

• ARC
– MHD accelerator tests and virtual inlet tests need to continue into 2003 somewhat.

• MSFC
– Antimatter trap experiment needs to travel to Fermi Lab to test filling

– MHD accelerator tests with LyTec unit will continue into 2003 somewhat

– Project Management support
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Concluding RemarksConcluding Remarks

♦ Space transportation challenges are daunting but avenues of
research exist which promise tremendous potential

♦ We must look beyond conventional technologies to ever make any
real progress toward our ultimate goals

Scaling-up existing systems will never satisfy our ultimate desires

♦ Fundamentally, it is a problem of energy storage density and energy-
to-thrust conversion efficiency −−−− Energetics

♦ A comprehensive investment strategy has been developed which
addresses the fundamental technical challenges while insuring
scientific excellence and accountability to the customer

♦ This research strategy has been implemented over the course of
several years with participation by NASA in-house staff, universities,
government labs, and the private sector and has built a solid record
of return on investment
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